US009344331B2

a2z United States Patent (10) Patent No.: US 9,344,331 B2
Kolbly 45) Date of Patent: May 17, 2016
(54) IMPLEMENTATION OF NETWORK DEVICE (56) References Cited
COMPONENTS IN NETWORK DEVICES
U.S. PATENT DOCUMENTS
(75) InVentOr: Donovan M' KOIblyS AuStiHS TX ([JS) 6’496’979 Bl * 12/2002 Chen """"""""""""" G06F 8/61
717/178
(73) Assignee: Trend Micro Incorporated, Tokyo (JP) 7,844,945 B2* 11/2010 Bhagiaccooceevrreeen. GOGF 8/61
717/107
(*) Notice: Subject to any disclaimer, the term of this 8,346,860 B2* /2013 Berg ..o H04J7 8/90/28;
pateIlt 18 eXtended or adJUSted under 35 8’694’988 Bz* 4/2014 Goldma_n """""" G06F 9/44526
U.S.C. 154(b) by O days. 717/162
8,966,024 B2* 2/2015 Koponen HO4L 41/0823
(21) Appl. No.: 14/112,644 709/220
8,966,029 B2* 2/2015 Zhang HO4L 41/0823
(22) PCTFiled: May 25,2011 709/220
(Continued)
(86) PCT No.: PCT/US2011/037887
FOREIGN PATENT DOCUMENTS
§ 371 (e)(1),
(2), (4) Date: Oct. 18,2013 CN 1560740 A 1/2005
CN 1790267 A 6/2006
(87) PCT Pub. No.. W02012/161707 (Continued)
PCT Pub. Date: Nov. 29, 2012 OTHER PUBLICATIONS
. N Ellul et al., Run-time compilation of bytecode in wireless sensor
(65) Prior Publication Data networks, Apr. 2010, 2 pages.*
US 2014/0059189 A1l Feb. 27,2014 (Continued)
(51) Int.CL Primary Examiner — Thuy Dao
GO6F 15/16 (2006.01) (74) Attorney, Agent, or Firm — Okamoto & Benedicto LLLP
HO4L 1224 (2006.01)
GOG6F 9/445 (2006.01) (57 ABSTRACT
52) U.S.CL A network device includes an execution engine having an
(52) g g
CPC .. HO4L 41/0803 (2013.01); GO6F 8/64 implementation of a network device component to process
(2013.01) data received by the network device, and a compiler to
(58) Field of Classification Search dynamically generate the implementation of the network

CPC ... GOGF 8/443; GOGF 8/4442; GOGF 11/3466;

device component through compilation of a general represen-

GOGF 8/64; HOAL 41/0303 tation using network device data for compiler optimization.

See application file for complete search history. 13 Claims, 4 Drawing Sheets

302
OBTAIN SOURCE REPRESENTATION OF NETWORK

DEVICE COMPONENT AT NETWORK DEVICE

304
OBTAIN DATA STORED IN THE NETWORK DEVICE

COMPILE SOURCE REPRESENTATIONINTHE |~ 308
NETWORK DEVICE USING THE DATA FOR
COMPILER OPTIMIZATION T0 GENERATE AN
EXECUTABLE REPRESENTATION OF THE
RETWORK DEVICE COMPONENT

PROVIDE THE EXECUTABLE REPRESENTATION TQ
EXECUTION ENGINE OF THE NETWORK DEVICE AS
AN IMPLEMENTATION OF THE NETWORK DEVICE
COMPONENT

308

US 9,344,331 B2
Page 2

(56)

9,116,608
2001/0042241
2005/0055350
2005/0125514
2006/0048114
2006/0101511
2006/0143601

2007/0266370
2009/0013210
2009/0276766
2010/0185679
2010/0257515
2011/0164506

2011/0209128
2014/0108600

2014/0344453
2015/0088982

FOREIGN PATENT DOCUMENTS

EP
WO

WO0-03098461 Al

References Cited
U.S. PATENT DOCUMENTS

B2* 82015
Al 11/2001
Al 3/2005
Al 6/2005
Al 3/2006
Al 5/2006
Al* 6/2006

Werme et al.
Balakrishnan
Schmidt
Faillenot et al.

Al 11/2007
Al* 1/2009
Al* 11/2009
Al 7/2010
Al* 10/2010
Al* 7/2011

Myers et al.

Ferrazzini et al.
Bates et al.

Al*
Al*

8/2011
4/2014

Nikara et al.
Cabillic

Al* 11/2014

Al* 3/2015

2042987 A2 4/2009

11/2003

Concha ..o

Mclntosh et al. ...
Songetal. ...

Stavrou

HO04W 4/206

..... GO6F 8/61

717/170

............. 714/4
......... 717/159

717/145
HO4L 43/12
370/241

......... 717/140
..... GO6F 8/71

709/217
HO4L 67/10
709/224
HO4L 67/34
709/203

OTHER PUBLICATIONS

Ozturk et al., Compiler directed network-on-chip reliability enhance-
ment for chip multiprocessors, 2010, 10 pages.*

Gu et al., Phase-based adaptive recompilation in a JVM, Apr. 2008,
11 pages.*

Suganuma et al., Design and evaluation of dynamic optimizations for
a Java just-in-time compiler, Jul. 2005, 54 pages.*

Nuzman et al., JIT technology with C/C++: Feedback-directed
dynamic recompilation for statically compiled languages, Dec. 2013,
25 pages.*

Reiss, Frederick et al; Efficient Analysis of Live and Historical
Streaming Data and Its Application to Cybersecurity; http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.9539> Pub-
lication Date: Jul. 13, 2006.

European Search Report received in EP Application No. 11865997.8,
Feb. 18, 2015, 3 pages.

International Preliminary Report on Patentability received in PCT
Application No. PCT/US2011/037887, Dec. 5, 2013, 5 pages.
International Search Report & Written Opinion received in PCT
Application No. PCT/US2011/037887, Feb. 9, 2012, 8 pages.
Thibault, S. et al., “Safeand Efficient Active Network Programming,”
Reliable Distributed Systems, 1998, Proceedings Seventeenth IEEE
Symposium on, IEEE, 1998, 9 pages.

* cited by examiner

U.S. Patent May 17, 2016 Sheet 1 of 4 US 9,344,331 B2

NETWORK DEVICE

106 108
N S

GENERAL NETWORK DEVICE
REPRESENTATION DATA

! !

COMPILER

» N
&ﬁﬁz hN

EXECUTION ENGINE

104

NETWORK DEVICE | |
COMPONENT 110

101

INPUT/IQUTPUT

Fig. 1

U.S. Patent May 17, 2016 Sheet 2 of 4 US 9,344,331 B2
200
/-2'10
HARDWARE
PERIPHERAL{S}
T L1230
eois E
 NETWORK | L-226
- EXTERNAL
} COMPONENTLS) | INPUT/OUTPUT
i 202
/
PROCESSOR),
204 NETWORK 20
\ COMPONENTI(S)
SUPPORT |
CIrRcUITs [*]| [compILER | [conTROLLER] | [1O INTERFACE
= '*-\\
216" e 18
LI EXECUTION ENVIRONMENT] | |2
220" 230
I 208
MEMORY
212~ SOURCE NETWORK |~ 214
REPRESENTATION DEVICE DATA
EXECUTABLE L+ 940
277 |REPRESENTATION CODE

Fig. 2

U.S. Patent May 17, 2016 Sheet 3 of 4 US 9,344,331 B2

OBTAIN SOURCE REPRESENTATION OF NETWORK
DEVICE COMPONENT AT NETWORK DEVICE

] 304
OBTAIN DATA STORED IN THE NETWORK DEVICE

COMPILE SOURCE REPRESENTATION INTHE ~ |306
NETWORK DEVICE USING THE DATA FOR
COMPILER OPTIMIZATION TO GENERATE AN
EXECUTABLE REPRESENTATION OF THE
NETWORK DEVICE COMPONENT

PROVIDE THE EXECUTABLE REPRESENTATIONTQ | 308
EXECUTION ENGINE OF THE NETWORK DEVICE AS
AN IMPLEMENTATION OF THE NETWORK DEVICE
COMPONENT

Fig. 3

U.S. Patent May 17, 2016 Sheet 4 of 4 US 9,344,331 B2

402
GENERATE IMPLEMENTATION OF NETWORK
DEVICE COMPONENT IN EXECUTION ENGINE

'

. EXECUTE IMPLEMENTATION OF NETWORK
DEVICE COMPONENT

l

COLLECT RUNTIME DATA AND/OR DEPLOYMENT
DATA FOR COMPILER OPTIMIZATION

l

RE-COMPILE SOURCE REPRESENTATION OF
NETWORK DEVICE COMPONENT USING THE
COLLECTED DATA FOR COMPILER OPTIMIZATION
TO GENERATE A NEW EXECUTABLE
REPRESENTATION

'

PROVIDE NEW EXECUTABLE REPRESENTATION
OF NETWORK DEVICE COMPONENT TO
EXECUTION ENGINE

404

T 4(}6

408

410

Fig. 4

US 9,344,331 B2

1
IMPLEMENTATION OF NETWORK DEVICE
COMPONENTS IN NETWORK DEVICES

BACKGROUND

Computer networks include various devices that facilitate
communication between computers, such as routers,
switches, firewalls, management appliances, security appli-
ances, and the like (generally referred to as “network
devices”), A network device can include various functions
implemented by different components (“network device
components”). Some network device components are
required to be changed during the life of the network device
(e.g., modifying components in the field). For example, a
network device can include a network security component for
implementing a particular security function (e.g., a security
filter for filtering packets to identify a particular type of
attack). As new types of security vulnerabilities are discov-
ered, network security components should be updated to
compensate for the new threats. Thus, network devices can
include the capability of modifying the implementation of
their respective network device components.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are described with
respect to the following figures:

FIG. 1is a block diagram of a network device according to
an example implementation;

FIG. 2 is a block diagram of a network device according to
another example implementation;

FIG. 3 is aflow diagram showing a method 300 implement-
ing a network device component in a network device accord-
ing to an example implementation; and

FIG. 4 is a flow diagram showing a method of implement-
ing a network device component in a network device accord-
ing to another example implementation.

DETAILED DESCRIPTION

Implementation of network device components in network
devices is described. Various approaches can be used to install
and update network device components in network devices.
In one approach, a network device receives a network device
component in source form (e.g., a programming language
form), The network device then evaluates the source using an
interpreter to implement the network device component. In
another approach, a network device receives anetwork device
component in executable form (e.g., machine code having
native instructions of a particular processor). A vendor can
compile source offline (e.g., external to the network device)
and then provide the executable to the network device to
implement the network device component.

The interpretive approach can only achieve high perfor-
mance using specialized interpretation, a complex and lim-
ited technique. At the same time, a specialized interpreter has
limited notation that can limit the types of network device
components that can be implemented. The interpreter can be
generalized, but at the cost of performance. The external
compilation approach provides higher performance, but the
resultant executable is hardware-dependent. The same
executable cannot be delivered to network devices having
different architectures (e.g., MIPS, x86, etc.). This requires
the vendor to produce several different executables for differ-
ent network devices. Further, the approaches discussed above
do not incorporate network device data, such as deployment-
specific data (e.g., internet protocol (IP) addresses, network

10

15

20

25

30

35

40

45

50

55

60

65

2

deployment localities, etc.) and domain-specific runtime data
(e.g., traffic dependent statistics) into the network device
component implementation. Both approaches must instead
extract network device information from memory in the net-
work device, resulting in significant overhead costs and
decrease in performance of the network device component.

Inan embodiment, an execution engine in a network device
includes an implementation of a network device component
that processes data received by the network device. A com-
piler in the network device dynamically generates the imple-
mentation of the network device component through compi-
lation of a general representation using network device data
for compiler optimization. Co-location of the compilation
process and the execution engine in the network device pro-
vides both increased performance and hardware indepen-
dence. The general representation can be portable to network
devices having different architectures. By producing execut-
able code, overhead associated with interpretation is avoided.
Further, network device data is used for compiler optimiza-
tion, allowing for device-specific optimizations in the execut-
able representation. Various embodiments are described
below by referring to several examples.

FIG. 1 is a block diagram of a network device 100 accord-
ing to an example implementation. The network device 100
generally receives and transmits data, such as traffic on a
computer network, via an input/output (IO) interface 101.
The network device 100 can be any type of network device,
such as a router, switch, firewall, security appliance, manage-
ment appliance, and like type devices that facilitate commu-
nication in a computer network. The network device 100
includes a compiler 102 and an execution engine 104. The
network device 100 stores a general representation 106 and
network device data 108, The execution engine 104 includes
an implementation of a network device component 110.

The general representation 106 includes a human-readable
or partially human-readable description of the network
device component. The general representation 106 can
include source code that defines the network device compo-
nent. The source code can be written using a programming
language (e.g., C or C++), a markup language (e.g., exten-
sible markup language (XML)), or like type source lan-
guages. In an example, a portion of the source code can be
pre-compiled external to the network device 100. Thus, the
general representation 106 can have a human-readable por-
tion (e.g., source code) and a machine-readable portion (e.g.,
machine or object code pre-compiled from source), or a
human-readable portion without a pre-compiled portion. Any
pre-compiled portion of the general representation 106 can be
device-independent such that the general representation 106
can be deployed to network devices having various hardware
architectures. Any source code portion of the general repre-
sentation 106 can also be device-independent. The network
device 100 can receive the general representation 106 through
the IO interface 101 (e.g., the general representation 106 can
be sent to the network device 100 over a network).

The network device data 108 includes domain-specific
data generated by or for the network device 100. “Domain-
specific” data includes data related to the particular function-
ality or “domain” of the network device 100. Thus, if the
network device 100 processes packets of data, then the net-
work device data 108 can include data related to the function
of packet processing. In an example, the network device data
108 can include data used to configure the network device 100
(“configuration data™). The configuration data can include
parameters, attributes, settings, and the like that are particular
to the deployment of the network device 100 in a network
(e.g., particular internet protocol (IP) addresses, network

US 9,344,331 B2

3

deployment localities, etc.). In another example, the network
device data 108 can include data generated by the network
device 100 during operation or “runtime” (“runtime data”).
The runtime data can include statistics, or any analysis of
such statistics, generated by the network device 100 (e.g.,
during packet processing). The runtime data can be generated
by any network device component of the network device 100.
In an example, the runtime data is generated by an implemen-
tation of the network device component 110 in the execution
engine 104. The network device data 108 can include any
combination of configuration data and runtime data.

The compiler 102 obtains the general representation 106 as
parametric input. The compiler 102 processes the general
representation 106 to generate an executable representation
112. The executable representation 112 can include code that
is executable by the execution engine 104 (e.g., machine
code) to implement the network device component 110. The
general representation 106 can be modified during the life of
the network device 100 (e.g., upgraded, patched, etc.) any
number of times. Upon receiving a new version of the general
representation 106, the compiler 102 can generate a new
executable representation 112 thereby generating a new
implementation of the network device component 110. Thus,
the compiler 102 can dynamically generate the executable
representation 112 within the network device 100.

The compiler 102 can also obtain the network device data
108 as parametric input. The compiler 102 can use the net-
work device data 108 for compiler optimization when gener-
ating the executable representation 112. That is, the execut-
able representation 112 can be “optimized” for the network
device 100 based on the network device data 108.

The compiler 102 canuse configuration data in the network
device data 108 to include device-dependent parameters in
the executable representation 112 (e.g., “hard-coded” param-
eters specific to the configuration of the network device 100).
For example, the compiler 102 can hard code particular IP
addresses configured for the network device 100 into the
executable representation 112. In this manner, the execution
engine 104 can obtain device-dependent parameters from the
instruction stream (e.g., from the executable representation
112 itself), rather than having to introduce overhead of
obtaining the parameters from data memory in the network
device 100. The compiler 102 can use runtime data in the
network device data 108 to configure the executable repre-
sentation 112 operate with better performance given particu-
lar traffic processed by the network device 100. For example,
the network device component can be a security component
that analyzes traffic. The network device 100 can collect
traffic statistics during operation, such as a large amount of
user datagram protocol (UDP) traffic on port 53, because the
network device 100 may be fronting a large domain name
service (DNS) farm. The compiler 102 can use such traffic
statistics to optimize a comparison tree in the executable
representation 112 so that the common case of UDP traffic on
port 53 is processed faster. In general, the compiler 102 can
use the runtime data to perform domain-specific optimization
of the executable representation 112.

From the above examples, it can be seen that the compiler
102 can insert various optimizations in the resultant execut-
ablerepresentation 112 based on the network device data 108.

The execution engine 104 obtains the executable represen-
tation 112 as parametric input. The execution engine 104
implements the network device component 110 through
execution of the executable representation 112. The network
device component 110 can be any type of function performed
by the network device 100, such as a switching function, a
routing function, a security function, and the like. The net-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

work device component 110 can process traffic received by
the network device 100 on the 1O interface 101. The network
device component 110 can be installed by providing the gen-
eral representation 106 to the network device 100. The net-
work device component 110 can be modified (e.g., upgraded,
patched, etc.) by providing a new version of the general
representation 106, or by some other command (e.g., com-
mand to modify the network device component 110 to incor-
porate optimizations based on new network device data 108.)

FIG. 2 is a block diagram of a network device 200 accord-
ing to another example implementation. The network device
200 includes a processor 202, support circuits 204, an 10
interface 206, a memory 208, and hardware peripheral(s) 210.
The processor 202 includes any type of microprocessor,
microcontroller, microcomputer, or like type computing
device known in the art. The support circuits 204 for the
processor can include cache, power supplies, clock circuits,
data registers, 1O circuits, and the like. The IO interface 206
can be directly coupled to the memory 208, or coupled to the
memory 208 through the processor 202. The 10 interface 206
can receive external input applied to the network device 200.
The memory 208 can include random access memory, read
only memory, cache memory, magnetic read/write memory,
or the like or any combination of such memory devices. The
hardware peripheral(s) 210 can include various hardware cir-
cuits that perform functions on behalf of the processor 202
and the network device 200.

The memory 208 stores data for the network device 200,
including a source representation 212 and network device
data 214. The source representation 212 can include a collec-
tion semantics defined by a language, such as a programming
language (e.g., C or C++), markup language (e.g., XML), or
the like. The source representation 212 defines a network
device component using the semantics. In an example, a
portion of the semantics can be pre-compiled external to the
network device 200. Thus, the source representation 212 can
have a collection of semantics (e.g., source code) and a
machine-readable portion (e.g., machine or object code pre-
compiled from source), or a collection of semantics without a
pre-compiled portion. Any pre-compiled portion of the
source representation 212 can be device-independent such
that the source representation 212 can be deployed to network
devices having various hardware architectures. Any semantic
description in the source representation 212 can also be
device-independent.

The network device data 214 includes data generated by or
for the network device 200. The network device data 214 can
include data used to configure deployment of the network
device 200 (“deployment data”). The deployment data can
include parameters, attributes, settings, and the like that are
particular the deployment of the network device 100 in a
network (e.g., particular internet protocol (IP) addresses, net-
work deployment localities, etc.). The network device data
214 can also include runtime data. The runtime data can
include statistics, or any analysis of such statistics, generated
by the network device 200 during network traffic processing.
The runtime data can be generated by any network device
component of the network device 200.

In an example, the processor 202 implements a compiler
216, a controller 218, and an execution environment 220 to
provide the functions described below. The memory 208 can
store code 240 that is executed or interpreted by the processor
202 to implement the compiler 216, the controller 218, and
the execution environment 220.

Inparticular, the compiler 216 obtains the source represen-
tation 212 as parametric input. The compiler 216 processes
the source representation 212 to generate an executable rep-

US 9,344,331 B2

5

resentation 222. The executable representation 222 can
include machine readable code that is executable by the pro-
cessor 202 within the execution environment 220 to imple-
ment a network device component 224. The compiler 216 can
also obtain the network device data 214 as parametric input.
The compiler 216 can use the network device data 214 for
compiler optimization when generating the executable repre-
sentation 222. That is, the executable representation 222 can
be “optimized” for the network device 200 based on the
network device data 214. Various types of optimizations that
may be employed are discussed above with respect to FIG. 1.

The execution environment 220 provides an interface or
“operating system” between the executable representation
222 and the processor 202 to provide an execution engine.
The executable representation 222 is executed within an
execution engine provided by the execution environment 220
to implement a network component 224.

The controller 218 can provide various control functions
for the network device 200. The controller 218 can request
and obtain the source representation 212 through the IO inter-
face 206 (e.g., the source representation 212 can be sent to the
network device 200 over a network). The source representa-
tion 212 can be modified during the life of the network device
100 (e.g., upgraded, patched, etc.) any number of times. Upon
receiving a new version of the source representation 212, the
controller 218 can cause the compiler 216 to generate a new
executable representation 222 thereby generating a new
implementation of a network device component 224. Thus,
the controller 218 can cause dynamic generation of the
executable representation 222 within the network device 200,
and hence dynamic implementations and re-implementations
of a respective network component 224.

The controller 218 can also cause the compiler 216 to
re-compile the same version of the source representation 212
with different network device data 214. The controller 218
can cause the compiler 216 to generate a new executable
representation 222 with different optimizations obtained
from the network device data 214. For example, after the
executable representation 222 is executed, various statistics
can be collected through implementation of a network device
component 224 that processes network traffic. These statis-
tics can be used to provide further optimization of the execut-
able representation 222, as discussed above with respect to
FIG. 1.

The compiler 216, the controller 218, and the execution
environment 220 have been described as a component group
230 implemented by the processor 202. In some examples,
the compiler 216, the controller 218, or the execution envi-
ronment 220 (or any combination thereof) can be imple-
mented as a dedicated circuit on the hardware peripheral(s)
210. For example, the hardware peripheral(s) 210 can include
aprogrammable logic device (PLD), such as a field program-
mable gate array (FPGA), which can be programmed to
implement the functions of the compiler 216, the controller
218, and/or the execution environment 220. The component
group 230 can be implemented as a combination of a proces-
sor executing code and dedicated circuitry in hardware
peripheral(s). Likewise, at least one network component 226
can be implemented as a circuit on the hardware peripheral(s)
210. For example, the executable representation 222 can be in
the form of configuration data for a PLD such that the PL.D
implements a network device component 226 as a dedicated
circuit. In general, the component group 230 and the network
component(s) 226 comprise a processor circuit, whether such
elements are implemented by the processor 202, the hardware
peripheral(s) 210, or both.

10

15

20

25

30

35

40

45

50

55

60

65

6

For purposes of clarity by example, the network device 200
has been described with respect to a single source represen-
tation being compiled to implement a given network device
component. In a more general example, the network device
200 can implement a plurality of network device components,
each being generated by compiling respective source repre-
sentations. The network device components can be imple-
mented as processor readable code, hardware, or a combina-
tion thereof.

FIG. 3 is a flow diagram showing a method 300 of imple-
menting a network device component in a network device
according to an example implementation. The method 300
begins at step 302, where a source representation of the net-
work device component is obtained at the network device. At
step 304, data stored in the network device is obtained. At step
306, the source representation is compiled in the network
device using the data for compiler optimization to generate an
executable representation of the network device component.
At step 308, the executable representation is provided to an
execution engine of the network device as an implementation
of the network device component. In an example, the data
obtained at step 304 includes runtime data generated by the
execution engine. The data obtained at step 304 can also
include deployment data representing a configuration of the
network device. The data obtained at step 304 can include a
combination of deployment data and runtime data. In an
example, the source representation includes source code or a
combination of source code and pre-compiled source code.

FIG. 4 is a flow diagram showing a method 400 of imple-
menting a network device component in a network device
according to another example implementation. The method
400 begins at step 402, where an implementation of the net-
work device component is generated in an execution engine
of the network device. For example, the method 300 may be
executed in step 402. At step 404, the network device imple-
mentation is executed. The network device implementation
can be executed to process data (e.g., network traffic) and
produce runtime data as a result (e.g., traffic statistics). At step
406, runtime data and/or deployment data is collected for
compiler optimization. At step 408, the source representation
is re-compiled using the collected data for compiler optimi-
zation to generate a new executable representation. At step
410, the new executable representation is provided to the
execution engine. The method 400 can return to step 404 and
repeat to further optimize the executable representation of the
network device component.

Implementation of network device components in network
devices has been described. In various examples, a network
device includes a compiler co-located with a runtime execu-
tion environment in order to dynamically generate implemen-
tations of network device components from source represen-
tations that have network domain optimizations. Co-locating
the compilation process with the runtime execution environ-
ment provides for reduced overhead, deployment/configura-
tion specific optimizations, and runtime data specific optimi-
zations.

The techniques described above may be embodied in a
computer-readable medium for configuring a computing sys-
tem to execute the method. The computer readable media may
include, for example and without limitation, any number of
the following: magnetic storage media including disk and
tape storage media; optical storage media such as compact
disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk
storage media; holographic memory; nonvolatile memory
storage media including semiconductor-based memory units
such as FLASH memory, EEPROM, EPROM, ROM; ferro-
magnetic digital memories; volatile storage media including

US 9,344,331 B2

7

registers, buffers or caches, main memory, RAM, etc., just to
name a few. Other new and various types of computer-read-
able media may be used to store machine readable code
discussed herein.

In the foregoing description, numerous details are set forth
to provide an understanding of the present invention. How-
ever, it will be understood by those skilled in the art that, the
present invention may be practiced without these details.
While the invention has been disclosed with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations therefrom.
It is intended that the appended claims cover such modifica-
tions and variations as fall within the true spirit and scope of
the invention.

What is claimed is:

1. A method of implementing a network device component
in a network device, comprising:

obtaining, by the network device, a source representation
of the network device component;

obtaining data stored in the network device, the obtained
data comprising runtime data representing statistics
related to packets processed during operation of the
network device, and deployment data comprising an
Internet Protocol address of the network device;

compiling, by a compiler in the network device, the source
representation using the obtained data for compiler opti-
mization to generate an executable representation of the
network device component; and

executing the executable representation of the network
device component by an execution engine in the network
device.

2. The method of claim 1, further comprising:

generating further runtime data responsive to the executing
of the executable representations of the network device
component by the execution engine;

re-compiling the source representation using the further
runtime data to generate a further executable represen-
tation of the network device component; and

executing the further executable representation of the net-
work device component by the execution engine.

3. The method of claim 1, wherein the obtaining of the

source representation comprises:

obtaining an un-compiled source code or a partially com-
piled source code.

4. The method of claim 1, wherein the executing of the
executable representation of the network device component
comprises executing an executable representation of a net-
work switch or a network router.

5. A network device, comprising:

a processor;

a compiler executable by the processor to generate an
executable representation of a network device compo-
nent by compiling, using network device data, a source
code for the network device component, the network
device data comprising runtime data including statistics

10

15

20

25

30

35

40

45

50

8

related to packets processed during operation of the
network device, and configuration data comprising an
Internet Protocol address of the network device; and

an execution engine executable by the processor to execute
the executable representation of the network device
component.

6. The network device of claim 5, wherein the source code
comprises un-compiled source code or partially compiled
source code.

7. The network device of claim 5, wherein the executable
representation of the network device component comprises
an executable representation of a network switch or a network
router.

8. The network device of claim 5, wherein the executing of
the executable representation of the network device compo-
nent produces further runtime data, and wherein the compiler
is executable by the processor to further compile the source
code using the further runtime data, to produce a further
executable representation of the network device component,
and

wherein the execution engine is executable by the proces-

sor to execute the further executable representation of
the network device component.

9. A network device, comprising:

an input/output (IO) interface to receive a source represen-

tation of a network device component, the source repre-
sentation being un-compiled or partially compiled;

a memory to store the source representation and network

device data; and

a processor, coupled to the memory, to generate an execut-

able representation of the network device component
through compilation of the source representation using
the network device data for compiler optimization, and
to execute the executable representation to implement
the network device component, wherein the network
device data comprises runtime data representing statis-
tics generated by the processor, the statistics related to
processing of packets, and the network device data fur-
ther comprises configuration data including an Internet
Protocol address of the network device.

10. The network device of claim 9, wherein the runtime
data is generated by the network device component as imple-
mented by the processor.

11. The network device of claim 9, wherein the source
representation comprises un-compiled source code or par-
tially compiled source code.

12. The network device of claim 9, wherein the executable
representation of the network device component comprises
an executable representation of a network switch or a network
router.

13. The network device of claim 12, wherein the statistics
are related to the processing of packets by the executable
representation of the network switch or the network router.

#* #* #* #* #*

